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ABSTRACT

A novel statistical image model is proposed to facilitate the design and analysis of image processing algorithms.
A mean-removed image neighborhood is modeled as a scaled segment of a hypothetical texture source, char-
acterized as a 2-D stationary zero-mean unit-variance random field, specified by its autocorrelation function.
Assuming that statistically similar image neighborhoods are derived from the same texture source, a clustering
algorithm is developed to optimize both the texture sources and the cluster of neighborhoods associated with
each texture source. Additionally, a novel parameterization of the texture source autocorrelation function and
the corresponding power spectral density is incorporated into the clustering algorithm. The parametric auto-
correlation function is anisotropic, suitable for describing directional features such as edges and lines in images.
Experimental results demonstrate the application of the proposed model for designing linear predictors and
analyzing the performance of wavelet-based image coding methods.
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1. INTRODUCTION

A model that captures the important attributes of a signal is an essential tool to analyze the performance of
signal processing algorithms. A good model not only provides accurate predictions of the actual performance,
but also enables calculation of theoretical bounds and gives insights to further improvements of the algorithm.

For the design and analysis of image processing algorithms, two classic statistical image models are widely
adopted: the separable model1 and the isotropic model.2,3 In both models, image pixels are assumed to be
samples of a filtered image source, with the source modeled as a 2-D stationary random field. Although the
autocorrelation function in both models is composed of a simple exponential function, the contours of equal
autocorrelation are rhombi in the former, with the diagonals aligned with the vertical and horizontal axes,
whereas they are circles in the latter.

Despite their simplicity and popularity, we observed two weaknesses in these models. First, they assume
homogeneous texture in the image such that a global model suffices for the entire image. Such a global model
neglects the diversity of individual image features, hence incapable of evaluating spatially adaptive algorithms.
Second, directional features such as edges and lines appear frequently in typical images. The high-contrast
nature of these features affects the performance of image processing algorithms significantly for both objective
and subjective assessments. However, these features are usually neither separable nor isotropic.

More recently, Ref. 4 and Ref. 5 proposed an anisotropic model of image spectra that accounts for the
directionality in images. Still, being a global model, it is not suitable for the design and analysis of adaptive
algorithms.

In this paper, we devise a clustering algorithm that partitions the image into clusters of image local neigh-
borhoods with statistical similarity. The mean-removed image neighborhoods in the same cluster are modeled
as scaled segments of a hypothetical texture source, characterized as a 2-D stationary zero-mean unit-variance
random field. In addition, we propose a novel parameterization of the autocorrelation function and the power
spectral density of the texture sources. The parametric formulation closely approximates the statistical proper-
ties observed in a variety of image features. Furthermore, the parameterization process is incorporated into the
clustering algorithm to optimize both the texture source parameters and the corresponding partition.

∗Please send correspondence to chuoling@stanford.edu.
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In the remainder of this paper, we first describe the proposed clustering algorithm in Sec. 2. The parametric
formulation is discussed in Sec. 3. Experimental results with the application of designing linear predictors and
analyzing the performance of wavelet-based image coding methods are reported in Sec. 4.

2. IMAGE MODELING WITH TEXTURE SOURCE CLUSTERING

2.1 Modeling with Sampling Covariance Matrices

Denote the image pixels by s[l] = s[lx, ly], lx, ly ∈ Z. For any square neighborhood of Sn × Sn pixels in the
image, we rearrange the pixels in the neighborhood to a vector nl ∈ RS2

n , where l indicates the location of the
center pixel of the neighborhood, and n(u)

l = s[l + i(u)], where i(u) maps the index of an element in nl to a 2-D
shift from the neighborhood center.

Additionally, divide the image into LB disjoint blocks of SB×SB pixels, each denoted by Bb, b = 0, · · · , LB−1.
We define a block of neighborhoods (BoN), denoted by Nb, as the set of neighborhoods with their center pixels
contained in Bb, i.e., Nb = {nl|l ∈ Bb}. Assuming the neighborhoods in Nb are all realizations of the same
random vector, the mean and covariance matrix of this random vector can then be estimated by the sample mean,
µb = 1

|Bb|
∑

l∈Bb
nl ∈ RS2

n , and the sample covariance, Cb = 1
|Bb|

∑
l∈Bb

nlnT
l − µbµ

T
b ∈ RS2

n×S2
n , respectively.

Consider an arbitrary 2-D linear filter with a support smaller than the Sn × Sn neighborhood. The filter
kernel can be expressed by h ∈ RS2

n such that when applied to a neighborhood nl, the filter output is hT nl. As a
result, the average energy of the filter output located in block Bb is hT (Cb +µbµ

T
b )h. Therefore, modeling a BoN

by µb and Cb yields exact prediction of linear image processing algorithms in terms of the average output energy.
However, there are (S4

n + S2
n)/2 unique elements in Cb. As an example, for SB = 16 and a small neighborhood

Sn = 5, there are already 325 unique elements in Cb, comparable to the number of pixels involved in the BoN,
hence defeating the purpose of using a model to predict the performance.

2.2 Modeling with Stationary Texture Sources

To simplify the model, we first define the scalar sample mean of Nb by µ̄b = 1
S2

n
µT

b 1. With µ̄b, we then define
the function vl[d] = vl[dx, dy], dx, dy ∈ Z and |dx|, |dy| < Sn, to be the average product between two µ̄b-removed
pixels in neighborhood nl separated by d, i.e.,

vl[d] = vl[−d] =
1

|{(u1, u2)|i(u1)− i(u2) = d}|
∑

{(u1,u2)|i(u1)−i(u2)=d}
(n(u1)

l − µ̄b)(n
(u2)
l − µ̄b). (1)

Consequently, we define the sample autocovariance function of Nb by vb[d] = 1
|Bb|

∑
l∈Bb

vl[d]. When modeling
Nb by µ̄b and vb[d] as an approximation of µb and Cb respectively, every element in µb is approximated by µ̄b,
and all of the elements C(u1,u2)

b such that i(u1)− i(u2) = d or i(u1)− i(u2) = −d are approximated by vb[d].

Modeling a BoN by the scalar sample mean and the sample autocovariance function essentially assumes that
all neighborhoods in the BoN are scaled and offset (in pixel intensity) spatial segments of the realizations of a
2-D discrete-space texture source, modeled as a discrete-space stationary zero-mean unit-variance random field.
To model a BoN with mean µ̄b and sample autocovariance vb[d], the corresponding scaling is

√
vb[0], the offset

is µ̄b, and the autocorrelation function of the texture source is vb[d]/vb[0], defined for |dx|, |dy| < Sn. Note that
the number of unique elements in vb[d] is 2S2

n − 2Sn + 1, significantly less than that in Cb.

2.3 Texture Source Clustering

To further simplify the model, we allow multiple BoNs to be derived from the same texture source while each
BoN still having its own mean and variance. Assume the BoNs are grouped into LC clusters, and the BoNs in
the same cluster are derived from the same texture source. Each cluster is denoted by Cc = {Nb|m(b) = c},
c = 0, · · · , LC − 1, where m(b) is a membership function that assigns Nb to cluster Cm(b), and each cluster
is associated with the autocorrelation function of its texture source, rc[d]. Note that rc[0] = 1. Given m(b)
and rc[d], a BoN, Nb, is now modeled by its mean, µ̄b, and the scaled texture autocorrelation, vb[0]rm(b)[d],
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rather than the sample autocovariance function, vb[d]. To quantify the approximation error between vb[d] and
vb[0]rm(b)[d], we define the distortion between the two functions by

d(vb, rc) =
∑

|dx|,|dy|<Sn

w[d](vb[d]− vb[0]rc[d])2 = k0,b +
∑

|dx|,|dy|<Sn

(−2k1,b[d]rc[d] + k2,b[d]rc[d]2) (2)

where k0,b =
∑
|dx|,|dy|<Sn

w[d]vb[d]2, k1,b[d] = vb[0]w[d]vb[d], k2,b[d] = vb[0]2w[d], and w[d] depends on the
linear processing algorithm of interest. For some linear filters, the energy of the filter output calculated via the
model may be more sensitive to the approximation error in some of the autocovariance values, hence requiring
larger weights for these values. For modeling of the image neighborhoods in general without targeting on a
specific algorithm, we simply consider w[d] = 1.

In the following discussion, we describe a clustering algorithm that optimizes m(b) and rc[d] for a given set
of vb[d], b = 0, · · · , LB − 1, such that the overall distortion,

∑
b=0,··· ,LB−1 d(vb, rm(b)), is minimized. We begin

the algorithm by initializing m(b), for instance, via evenly partitioning the BoNs into LC clusters. Given the
initialized m(b), the set of rc[d] that minimizes the overall distortion is determined by

rc[d] = rc[dx, dy] =

∑
b|m(b)=c k1,b[d]∑
b|m(b)=c k2,b[d]

, ∀ |dx|, |dy| < Sn, c = 0, · · · , LC − 1. (3)

Given this set of rc[d], the m(b) can be modified to further decrease the overall distortion. The optimal m(b) is
determined by

m(b) = argmin
c=0,··· ,LC−1

d(vb, rc), ∀ b = 0, · · · , LB − 1. (4)

The algorithm continues by iterating between (3) and (4) until the overall distortion converges to a local minimum.

3. PARAMETRIC TEXTURE SOURCES

In this section, we propose a parametric formulation for the autocorrelation function of the texture sources.
This parameterization serves several purposes. First, it significantly reduces the amount of information required
to represent the autocorrelation values. For image communication applications where the model needs to be
signaled as side information, this reduction is essential to avoid the excess overhead. Second, it extrapolates
from the limited set of observed sample covariance values to provide the full autocorrelation function and the
corresponding power spectral density (PSD) of the texture source. As a result, it enables performance analysis
of linear filtering with a support larger than the neighborhood size. Third, the proposed parametric texture
autocorrelation is a positive definite function, i.e., any covariance matrix derived from it is positive definite
without the need of additional regularization. These purposes will be elaborated in the following discussion.

3.1 Parametric Continuous-Space Autocorrelation Function

We assume that a discrete-space texture source, modeled as a 2-D discrete-space stationary zero-mean unit-
variance random field t[l] = t[lx, ly] (Section 2.2), consists of samples of the filtered and scaled version of a
continuous-space texture source, modeled as a 2-D continuous-space stationary zero-mean unit-variance random
field t̃(p) = t̃(px, py). The filtering accounts for the aperture function of the imaging device, and the scaling
normalizes the discrete-space random field so that it is also unit-variance.

In this subsection, we propose a parametric formulation for the autocorrelation function and the PSD of
the continuous-space texture source, denoted by rt̃t̃(τ ) = rt̃t̃(τx, τy) and Φt̃t̃(ω) = Φt̃t̃(ωx, ωy) respectively. The
corresponding parametric autocorrelation function and PSD of the discrete-space texture source is derived in
Section 3.2.

To devise a parameterization that describes a variety of sample autocovariance functions observed in typical
image neighborhoods, we define two types of local image features: the regular features, such as an edge, a line
(two edges), and stripes (periodic edges); and the irregular features, accounting for other, usually more complex,
features.
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For simplicity, we first consider the 1-D case. In the locally mean-removed 1-D neighborhoods with textures
that are complex and lacking in dominant regular features, zero-crossing occurs in an irregular manner, thus
classified as irregular features. Note that even a flat region in the image appears as irregular features after local
mean-removal. This zero-crossing pattern is similar to that of a mean-removed random telegraph signal, which
is a bi-level signal with the changes in level (zero-crossing) occurring according to a Poisson process. It can be
shown that the autocorrelation function of a zero-mean unit-variance random telegraph signal is exp(−2λpτ)
where λp is the rate of the underlying Poisson process. Due to this similarity, we assume that the texture
autocorrelation of the irregular features generally decays exponentially with the distance between two points,
consistent with the exponential function in both the separable model1 and the isotropic model.2,3

For the regular features, however, this assumption does not hold. Consider a group of 1-D mean-removed
horizontal neighborhoods that intersects the same vertical line in the image. In this example, there are always two
zero-crossings, with a fixed separation, in every neighborhood. This fixed zero-crossing pattern can no longer be
approximated by a Poisson random process. Instead, we approximate the texture source of these neighborhoods
by a random square-wave signal, defined as

s̃(p|Ts, rs) =
{

A0, ∃k ∈ Z s.t. 0 ≤ p + kTs + Θ < rsTs

A1, otherwise, (5)

where Ts is the period, 0 < rs < 1 determines the duration at the two levels, and Θ is a random phase.
Continuing with the above example, the neighborhoods containing a line can be considered as segments of a
random square-wave signal with Ts close to the width of the 1-D neighborhood, and rs selected according to
the width of the line. Similarly, the neighborhoods containing a single dominant edge are segments of a random
square-wave signal with Ts close to twice the neighborhood width and rs = 0.5 so that an edge appears only
once in every neighborhood. Modeling the neighborhoods containing periodic stripes is straightforward. Finally,
it can be shown that the autocorrelation function of a zero-mean unit-variance random square-wave signal is

rs̃s̃(τ |Ts, rs) =
2rs

1− rs

∞∑

k=1

sinc(krs)2cos(k
2π

Ts
τ). (6)

Therefore, we assume that the texture source of regular features has a parametric autocorrelation function with
the same form. Note that rs̃s̃(τ |Ts, rs) = rs̃s̃(τ |Ts, 1− rs).

Based on the above discussion, we propose the following parameterization for the texture autocorrelation:

rt̃t̃(τ |β, θ, λa, λb, ωs, rs) = β exp(−(λ2
aτ2

a + λ2
bτ

2
b )

1
2 ) + (1− β)

K∑

k=1

γ(k, rs)cos(kωsτa) (7a)

(
τa

τb

)
=

(
cos θ sin θ
− sin θ cos θ

)
τ (7b)

γ(k, rs) =
sinc(krs)2∑K

k=1 sinc(krs)2
(7c)

where 0 ≤ β ≤ 1, 0 ≤ θ < π, 0 < λb ≤ λa, ωs > 0, and 0 < rs ≤ 1
2 . The first term is responsible for the irregular

features, while the second describes the regular ones. Taking a weighted average of the two terms by β explicitly
assumes that the texture source is composed of an irregular texture and a regular texture component, and the
two components are uncorrelated.

The first term is an extension of the isotropic model2,3 to allow some directionality in the irregular texture.
The angle θ indicates the direction of the largest variation in the texture source. The autocorrelation function
is exp(−λaτa) along θ, whereas it is exp(−λbτb) along the direction orthogonal to θ, decaying at a smaller or
equal rate. The autocorrelation along other directions are also derived from λa and λb such that the contours of
equal autocorrelation are concentric ellipses where the minor axis is aligned with θ. Additionally, the length of
the minor axis and that of the major axis are proportional to λ−1

a and λ−1
b respectively.
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In the second term, the tangent of the edges and lines in the regular texture aligns with θ, sharing the same
direction of the largest variation with the irregular texture for simplicity. Along θ, the second term is essentially
the autocorrelation of the random square-wave signal in (6) with ωs = 2π

Ts
and the infinite sum approximated

by the sum of the first K harmonics. In practice, we choose K = 3. Orthogonal to θ, the autocorrelation is
constant. Note that the incorporation of the regular texture enables modeling of negative autocorrelation values,
which cannot be described by the irregular component.

The corresponding parametric PSD can be expressed as

Φt̃t̃(ω|β, θ, λa, λb, ωs, rs) = β
2π

λaλb
(1 + (

ωa

λa
)2 + (

ωb

λb
)2)−

3
2 (8a)

+ (1− β)
K∑

k=1

γ(k, rs)π(δ(ωa − kωs) + δ(ωa + kωs)) (8b)

(
ωa

ωb

)
=

(
cos θ sin θ
− sin θ cos θ

)
ω (8c)

In the irregular texture, the contours of equal PSD are also concentric ellipses with the major axis aligned to θ.
The length of the major axis and that of the minor axis are proportional to λa and λb respectively. The irregular
texture appears as pairs of delta impulses along θ in the PSD, accounting for the off-center peaks frequently
observed in the spectrum estimation from the discrete-space samples, e.g., the periodogram estimation.

3.2 Continuous-Space to Discrete-Space Conversion

Denote the aperture function of the imaging device by h̃a(p) and the corresponding transfer function by H̃a(ω).
The ideal aperture function is the ideal anti-aliasing filter with the cut-off frequency at ωx = ±πfsx and ωy =
±πfsy, where fsx and fsy denote the horizontal and the vertical sampling frequency of the discrete-space texture
source respectively. For practical imaging devices, we model the aperture function as a separable filter, i.e.,
H̃a(ω) = H̃a,1(ωx|fsx)H̃a,1(ωy|fsy), and the 1-D transfer function H̃a,1(ω|fs) is modeled as a root-raised-cosine
filter with the roll-off factor βr = 0.5, i.e.,

|H̃a,1(ω|fs)|2 =





1
fs

, |ω| ≤ (1− βr)πfs
1

2fs
(1 + cos( 1

2βrfs
(|ω| − (1− βr)πfs))), (1− βr)πfs < |ω| ≤ (1 + βr)πfs

0, otherwise,
(9)

hence the corresponding 1-D impulse response, h̃a,1(p|fs), is defined such that

h̃a,1(p|fs) ∗ h̃a,1(−p|fs) = (1− 4β2
rf2

s p2)−1 cos(βrπfsp) · sinc(fsp) (10)

Given rt̃t̃(τ ) and Φt̃t̃(ω) as in (7) and (8), the autocorrelation function and the PSD of the filtered source,
denoted by t̂(p), can be obtained by

rt̂t̂(τ ) = rt̃t̃(τ ) ∗ h̃a(τ ) ∗ h̃a(−τ ) (11a)

Φt̂t̂(ω) = Φt̃t̃(ω) · |H̃a(ω)|2 (11b)

Note that Φt̂t̂(ω) is now band-limited with the aperture function defined in (9). Finally, the autocorrelation
function of the discrete-space unit-variance texture source is obtained by

rtt[d] = rtt[dx, dy] =
1

rt̂t̂(0)
rt̂t̂(

dx

fsx
,

dy

fsy
) (12)

and the corresponding PSD is

Φtt(ejΩ) = Φtt(ejΩx , ejΩy ) =
1

rt̂t̂(0)

1∑
zx=−1

1∑
zy=−1

Φt̂t̂((Ωx − 2zxπ)fsx, (Ωy − 2zyπ)fsy) (13)
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3.3 Parameter Estimation

Parameter estimation can be incorporated into the texture source clustering algorithm described in Section 2.3
by replacing (3) with

rc[d] = argmin
rtt

∑

{b|m(b)=c}
d(vb, rtt|β, θ, λa, λb, ωs, rs), ∀ c = 1, · · · , LC . (14)

To reduce the parameter space, we consider fsx = fsy = fs and discretize β into 256 levels linearly from 0 to 1,
θ into 128 levels linearly from 0 to 127

128π, λa and λb into 64 levels from 10−3πfs to 2πfs linearly in exp(−λa) and
exp(−λb), ωs into 64 levels linearly from 1

64πfs to πfs, and rs into 64 levels linearly from 1
128 to 1

2 . Not that the
set of parameters can be represented by 39 bits with simple fixed-length coding.

In the first iteration of the clustering algorithm, instead of performing a full search to solve (14), we conduct
the following initialization procedure composed of simple image processing tasks and single-variable discrete
optimization. First, we compute the non-parametric optimal solution with (3), and denote it by r∗c [d]. The
parameter θ is initialized as the direction with the largest average squared gradient in r∗c [d]. Given θ, the
autocorrelation values at a sequence of points along θ, denoted by {da}, and orthogonal to θ, denoted by
{db}, are interpolated from r∗c [d], and denoted by {r∗c [da]} and {r∗c [db]} respectively. Second, ωs is initialized by
computing the 1-D zero-padded FFT of {r∗c [da]} and finding the location of largest FFT coefficients in magnitude.
Third, to initialize rs, we denote the zero-crossing point closest to τ = 0 in (6) by τz. Note that (6) represents
a mean-removed periodic sequence of triangles, and it can be shown that r2

s − rs + τz

Ts
= 0. Therefore, given ωs

and the zero-crossing point τz estimated from {r∗c [da]}, we initialize rs by minimizing r2
s − rs + τzωs

2π . Next, with
ωs and rs available, we initialize β and λa jointly by minimizing the sum of squared difference between {r∗c [da]}
and the corresponding values derived from rtt[d], with the aperture function neglected, computed by

rtt[da|β, λa] = β exp(−λa
da

fs
) + (1− β)

K∑

k=1

γ(k, rs)cos(kωs
da

fs
). (15)

Note that in this least square formulation, the optimal β is a function of the selected λa, and hence can be
computed analytically. Therefore, this step performs a single-parameter search that initializes two parameters
in the model. Finally, given β, λb is initialized similarly by minimizing the sum of squared difference between
{r∗c [db]} and the sequence computed by

rtt[db|λb] = β exp(−λb
db

fs
) + (1− β). (16)

After the initialization procedure, a joint search on {θ, λa, λb, ωs, rs} is performed in the vicinity of the initial
values to further refine the estimation. Again, the optimal β can be analytically computed as a function of the
selection of the other parameters. In the subsequent iterations of the clustering algorithm, the initial values can
be the set of parameters estimated in the previous iteration or that obtained with the initialization procedure,
whichever leads to a smaller distortion. In each iteration, for the given m(b) we might only find a suboptimal
solution of (14) due to the simplified search process. Nonetheless, as long as the overall distortion decreases, the
iterative clustering algorithm converges to a local minimum.

3.4 Filter Performance Analysis with Parametric Texture Source

In Section 2.2 and 2.3, we described the modeling of a block of neighborhoods Nb with its mean µ̄b, variance
vb[0], and a discrete-space texture source t[l]. For any linear filter, defined by the impulse response hf [l] or the
transfer function Hf (ejΩ), applied to the mean-removed Nb, the variance of the zero-mean filter output in block
Bb, denoted by Ef,b, can be estimated through

Ef,b = vb[0] · (rtt ∗ hf ∗ hf )[0] = vb[0]
∫

Ω

Φtt(ejΩ)|H(ejΩ)|2dΩ, (17)
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Barbara Boats Pentagon Spoke

Figure 1. Test images.

where hf [d] = hf [−d]. With the parametric formulation, the support size of the filter to be analyzed is no longer
limited by the Sn × Sn neighborhood size. The autocorrelation values with |dx|, |dy| ≥ Sn can be extrapolated
from the parametric model, despite that the corresponding sample covariance values are not available.

In addition, from (8), (11b), and (13), Φtt(ejΩ) is clearly always positive. Hence, the estimated filter output
variance computed in (17) is always nonnegative. This property does not exist with a non-parametric autocor-
relation function, e.g., the one computed in (3).

4. EXPERIMENTAL RESULTS

In this section, we report the experimental results for the 512 × 512 test images Barbara, Boats, Pentagon,
and Spoke, shown in Fig. 1. We consider two applications in the experiments: using the proposed parametric
model to design linear predictors, and using the model to analyze the performance of wavelet-based image coding
methods.

To construct the model, we choose the following global parameters: neighborhood size Sn = 13, block size
SB = 16, number of texture clusters LC = 32. In practice, we approximate the term δ(ωa ± kωs) in (8) with
π
λ2

0
(1 + (ωa±kωs

λ0
)2 + (ωb

λ0
)2)−

3
2 , λ0 = 10−3πfs, to avoid handling of delta impulses in the PSD. Correspondingly,

the second term (regular texture) in (7) is multiplied by exp(−λ0(τ2
a + τ2

b )
1
2 ).

For each test image, 16 resulting discrete-space texture sources, randomly selected from the total of 32, are
shown in Fig. 2. The non-parametric autocorrelation functions are obtained by evaluating (3) rather than
(14) in the last iteration of the clustering algorithm. In the autocorrelation functions in Fig. 2, the black
level denotes −1 and white denotes 1. The parametric PSD is plotted in logarithmic scale. In most cases, the
proposed six-parameter model well approximates the 313 unique values in the non-parametric function. Using
32 clusters is more than sufficient for most test images, except for Barbara. In Barbara, a small variation in
the orientation or the period of the stripes requires a different texture source to represent. Additionally, the
checkerboard patterns that appear frequently in the image cannot be modeled by the proposed parameterization,
due to the two orthogonal edges in the same image neighborhood. Hence, the stripes that are not represented by
a dedicated texture source and other intricate features are mixed into a cluster with a complex autocorrelation
structure, as shown in, for example, the bottom-left cluster in Fig. 2(a1), leading to a large distortion.

4.1 Linear Predictor Design

We assume a scenario where the model parameters are estimated at the encoder using the original test image, and
then the image is decimated by a factor of two in both dimensions and transmitted to the decoder. The decoder
attempts to recover the missing samples through linear prediction. The information necessary for designing the
predictors is also transmitted to the decoder as overhead.

For each texture source, we design three predictors of a support size up to the size of the 13×13 neighborhoods,
responsible for predicting the odd-even, even-odd, and odd-odd missing samples from the available even-even
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Table 1. Linear Predictor Design with Texture Source Clusters

fixed para. non-para. non-para.
overhead per texture 0 39 bits 480 bits 48 bits
overhead per pixel 0 0.005 bits 0.06 bits 0.006 bits

Barbara 22.29 dB +3.63 dB +5.87 dB +0.18 dB
Boats 28.80 dB +0.60 dB +1.11 dB +0.37 dB

Pentagon 28.01 dB +1.12 dB +1.69 dB +0.52 dB
Spoke 20.61 dB +6.70 dB +6.65 dB +0.12 dB

samples respectively. For comparison, a fixed 1-D predictor with impulse response [ 1
32 0 −5

32 0 5
8 0 5

8 0 −5
32 0 1

32 ]
is applied in a separable manner, and the PSNR of the reconstructed missing pixels serves as a reference.

Given the proposed parametric autocorrelation, the three optimum linear predictors can all be determined
from the 6 parameters, encoded by 39 bits per texture (Section 3.3), and about 0.005 bpp with 32 texture
sources. If the predictor is designed using the non-parametric autocorrelation, the 313 unique values also need
to be transmitted. An alternative is to design the predictors at the encoder and transmit the predictor as side
information. In this case, there are 60 unique coefficients in the 3 predictors, each quantized to 8 bits, resulting
in 480 bits per texture. Note that the performance loss due to this quantization is typically smaller than 0.05 dB.
We also consider a simpler case where only a 1-D vertical predictor and a 1-D horizontal predictor are designed
at the encoder using the non-parametric autocorrelation function, and the odd-odd samples are predicted in a
separable manner. Each of the 1-D filters has 3 unique coefficients, same as the fixed predictor, therefore the
overhead per texture is 48 bits, comparable to the parametric case.

The texture sources, hence the predictors, are designed for the mean-removed image neighborhoods. Hence,
the mean of each block of neighborhoods should also be available at the decoder. We assume that this mean can
be reliably estimated at the decoder from the available samples, and the overhead is neglected. In addition, the
membership function m(b) should also be signaled, requiring up to 5 bits per block (about 0.02 bpp).

From Table 1, the gain by designing locally-adaptive predictors using the parametric model ranges from 0.6
and 6.7 dB, highly depending on the image content. The loss in performance due to the proposed parameterization
can be significant, for instance more than 2 dB in Barbara due to the intricate image features as explained earlier.
Nevertheless, when compared with the case where the predictor designed from the non-parametric function is
constrained in the support size to achieve a comparable amount of overhead (39 vs. 48 bits), the parametric
function performs considerably better, demonstrating the potential in image communication applications.

4.2 Wavelet Image Coding Performance Analysis

As discussed in Section 3.4, for any linear transform applied on the mean-removed image neighborhoods, the
proposed model can be used to predict the variance of the transform coefficients. In the following experiments,
we analyze the rate-distortion performance of image coding with the conventional discrete wavelet transform
(DWT) and the direction-adaptive discrete wavelet transform (DA-DWT).6 The DA-DWT locally adapts the
wavelet filtering directions to image features so that the energy is concentrated in the low-pass coefficients to
improve the coding performance.

For each texture source, we first compute the variance of each subband. The subband variance in each block
is then the corresponding texture subband variance multiplied by the block variance. Based on the observation in
Ref. 7, we assume that locally the subband coefficients are Gaussian distributed, and model the entropy coding
performance by the rate-distortion function of Gaussian memoryless coding, i.e., R(θn) = max{0, 1

2 log2
vb,s

θn
}

and D(θn) = min{θn, vb,s}, where vb,s denotes the variance of subband s in block Bb, and θn controls the rate-
distortion trade-off. The same θn is used across all subbands and all blocks to achieve the optimal rate allocation.
Finally, the image-wise rate and distortion are computed by taking the average across subbands, weighted by
the number of coefficients in the subbands, and across all blocks.

In Fig. 3, we compare the rate-distortion curves derived from the model and that obtained from actual coders
for 4 levels of the DWT and the DA-DWT with the 5/3 wavelet filters, and the DWT with the ideal rectangular
low-pass and high-pass filters. Note that the subband variance of the hypothetical ideal DWT with IIR filters is



www.manaraa.com

computed in the PSD domain via numerical integration. For most test images, the performance gain by locally
adapting the filtering directions, i.e., the gap between the DWT and the DA-DWT, is successfully captured by
the model. For Barbara, the gap predicted is smaller than the actual one, again, due to the fact that parts of
the directional features (stripes) are not represented by a dedicated texture source. Fig. 3 also suggests that
by adapting the filtering directions, the DA-DWT with simple filters can approach or exceed the performance of
the conventional DWT with complex filters.

5. CONCLUSION

The proposed image model overcomes the weaknesses of the prior statistical models by incorporating a localized
representation of the image statistics with an anisotropic parameterization. The localized representation captures
local image properties, thus allowing handling of spatially-adaptive algorithms. The novel anisotropic parame-
terization further enables accurate description of directional image features. Potential applications include the
design of adaptive transforms for image coding and the design of adaptive filters for image restoration.
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(a1) Barbara: non-p. auto. (a2) Barbara: para. auto. (a3) Barbara: para. PSD

(b1) Boats: non-p. auto. (b2) Boats: para. auto. (b3) Boats: para. PSD

(c1) Pentagon: non-p. auto. (c2) Pentagon: para. auto. (c3) Pentagon: para. PSD

(d1) Spoke: non-p. auto. (d2) Spoke: para. auto. (d3) Spoke: para. PSD

Figure 2. Non-parametric autocorrelation, parametric autocorrelation, and parametric PSD of the discrete-space texture
sources.
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Figure 3. Rate-distortion performance of the DWT and the DA-DWT derived from the proposed model and from actual
coders.


